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9.1 Introduction

The use of phases in ground-based astronomical interferometry is severely limited by the

pathlength fluctuations of the Earth’s atmosphere (see for example the review by Quirren-

bach in Chapter 5). Two different approaches are widely used to deal with the problem

of atmospheric and instrumental phase corruption: closure phase methods (or phase self-

calibration), and phase-referencing. In the latter technique, the phase information from a

reference object is used to determine the atmospheric phase, and to correct the phase of the

target source accordingly. Both methods have been used extensively at radio wavelengths,

so one could hope to apply the same techniques in the visible and near-infrared. However,

while in radio astronomy the atmospheric coherence time τ0 is typically several minutes,

and the isoplanatic angle θ0 several degrees, the corresponding values in the optical regime

are only of order ten milliseconds and a few arcseconds.

These limitations have important consequences for phase-referencing in the visible and near-

infrared. They preclude the use of source-switching strategies and require the simultaneous

observation of target and reference object. While this might appear to be a very restrictive

requirement, there are several important applications of phase-referencing to optical long-

baseline interferometry. First, the phase difference can be used as the primary observable in

“astrometric” applications, e.g. to determine the positional offset of a circumstellar envelope

from the central star, or to search for the reflex motion of stars orbited by planets. (In the

latter case, a suitable reference object is needed within the isoplanatic patch.) Second, the
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reference phase can be used to increase the effective atmospheric coherence time, allowing

longer coherent integrations on the target source. As we shall see, phase-referencing can

improve the sensitivity of large interferometers by many magnitudes; it is therefore a key

technique for imaging faint objects. There are different variants of phase referencing: the

reference phase can come from simultaneous observations of a separate object (dual-star

observations), from observations of the target source with a second wavelength channel

(wavelength bootstrapping), or from a more sensitive baseline in an interferometer array

(baseline bootstrapping).

9.2 Principles of Phase Referencing

9.2.1 The Mark III Interferometer

We will use a relatively simple instrument, the Mark III interferometer (Shao et al. 1988,

see Figure 9.1), to explain some the principles of phase referencing. This means that we

can concentrate on one specific fringe-tracking technique (explained below), and that we

can ignore detector and background noise compared to the photon noise. Our qualitative

conclusions remain valid in many more general situations, however, and our quantitative

results can easily be generalized for more complex fringe-tracking schemes and more general

sources of noise (see e.g. Shao and Colavita 1992).

The Mark III optical interferometer was operational on Mt. Wilson, CA, from 1986 to 1990.

Its basic optical layout was that of a single-baseline Michelson interferometer, with two

siderostats feeding the two arms, and vacuum delay lines to compensate for the pathlength

difference. The baseline of the instrument could be configured to lengths ranging from 3.0

to 31.5 m, giving some flexibility for measurements of stellar diameters and observations of

binary stars. The maximum aperture size of the Mark III was 5 cm. The images of stars

from both arms of the interferometer were centered by an angle tracker, which worked in

the wavelength range 450 nm <∼ λ <∼ 600 nm.

The delay was modulated with a 500-Hz triangle wave of amplitude 800 nm. If the path-

length difference between the two interferometer arms was within the coherence length,

the intensity at the output of the beam combiner would thus vary sinusoidally with time.

The phase of this signal was computed in real time and used to track the movement of

the fringes due to atmospheric pathlength fluctuations. The closed-loop bandwidth of the

fringe tracker was ∼ 20 Hz. Under favorable seeing conditions, the fringes stayed locked

for several seconds, sometimes up to a few minutes. Once per second, the fringe amplitude

was compared to a preset value. If it was lower than this threshold, the fringe tracker

assumed that it was not locked on the central fringe and jumped one fringe; the direction

was determined by the visibility gradient.

Dichroic beam splitters in the two output arms of the beam combiner provided four spectral

channels. A broad-band channel (600 nm <∼ λ <∼ 900 nm, giving an effective fringe-tracking
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Figure 9.1: Schematic drawing of the Mark III interferometer. The two siderostats
feed light into a vacuum system. The two mirrors feeding light into the delay lines are
mounted on piezo-electric actuators and are part of the angle-tracking servo loop.
The positions of the two optical delay lines are continuously monitored with a laser
interferometer. They are optically equivalent, but the cart and the small mirror in one
of them are actively controlled and are part of the fringe-tracking servo loop. The
beams from the two arms are combined with a 50% reflective mirror. The light in
each of the two outputs is divided with a dichroic beam splitter, so that four wave-
length channels (broad band for fringe tracking, 500 nm, 550 nm, and 800 nm in the
standard setup) are available.
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wavelength λt ' 700 nm) was used to track the fringes, while substantially narrower band-

passes defined by interference filters were used in the other channels to take the scientific

data. This arrangement ensured that the fringe packet was much wider in the data channels

than in the tracking channel, so that errors in the central fringe identification did not lead

to a noticeable visibility reduction.

9.2.2 Visibility Estimation and Signal-to-Noise Ratio

For each of the four spectral channels, arriving photons are counted synchronously with

the delay modulation in bins corresponding to λ/4. (Since the physical stroke is equal to

λ only in the channel with the longest wavelength, dead time is added in the electronics at

the end of the stroke in the other three channels.) From the four bin counts A, B, C, and

D, the square of the visibility V 2 can be estimated using

V 2 =
π2

2
· 〈X

2 + Y 2 −N〉
〈N −Ndark〉2

, (9.1)

where X = C − A and Y = D − B are the real and imaginary parts of the visibility,

N = A + B + C + D is the total number of photons counted, and Ndark is the background

count rate determined separately on blank sky. This estimator for V 2 is not biased by

photon noise (Shao et al., 1988). The visibility phase is estimated using

φ = arctan

(

Y

X

)

− π

4
. (9.2)

The data are averaged using a combination of coherent and incoherent integrations.∗ By

choosing a coherent integration time T , an observation of total duration M · T is divided

into M intervals, which are averaged incoherently. The variance of the V 2-estimator (Equa-

tion 9.1) is then given by

σ2 =
π4

4MN2
+

π2V 2

MN
, (9.3)

where N is the number of photons detected per coherent integration time (Colavita, 1985).

The signal-to-noise ratio (SNR) of V 2 is therefore

SNR(V 2) =
2

π2
·

√
MNV 2

√

1 + 4
π2 NV 2

. (9.4)

If NV 2 � 1, the second term in Equation 9.3 dominates, and the variance depends only

on the total number of photons detected, MN . If however NV 2 � 1, the first term

is the dominant one, and the variance for a given total duration of the observation (i.e.,

∗Coherent integration means that we sort each photon arriving during the integration time in one of

the bins A, B, C, D, and use Equation 9.1 to get an estimate of V
2. Incoherent integration means that

we average over many estimates of V
2. The intuitive meaning is that the coherent integration is used to

estimate both amplitude and phase of the visibility, whereas the incoherent integration averages over the

modulus of the visibility.
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constant total number of photons MN) decreases with increasing coherent integration time,

σ2 ∝ N−1 ∝ T−1; this implies that the signal-to-noise ratio of V 2 is ∝ T 1/2 (for constant

M ·T ). We will call the two cases the “photon-rich” and “photon-starved” regimes, although

NV 2, and not N , is the critical quantity.

The extremely important results captured in Equations 9.3 and 9.4 have a simple intuitive

interpretation. If the coherent integration time is sufficiently long, we get a good estimate

of the amplitude and phase of the complex visibility. We can then stop the coherent

integration, write out V 2 for a data sample, and average over these samples later without

losing sensitivity. This is the photon-rich regime. If we are forced to stop the coherent

integration (e.g., because of variations in the atmospheric or instrumental phase) before

we get a meaningful phase measurement, we can still estimate V 2 for each data sample,

but averaging over these estimates gives the poorer signal-to-noise characteristic of the

photon-starved regime.

While these considerations show that it is advantageous to choose T large enough to get

into the photon-rich regime, values larger than a fraction of the atmospheric coherence

time will lead to serious phase changes and therefore to unacceptable degradation of the

visibility. In the Mark III “standard” data reduction for measurements of stellar diameters

and binary stars, T = 4 ms is adopted, which gives a coherence loss of a few per cent for

seeing conditions typical for Mt. Wilson.

Several calibrator stars are normally included in the observing list for each night. They are

used to determine the “system visibility” V 2
sys, i.e., the value of V 2 observed for unresolved

stars, as a function of seeing, zenith angle, time, and angle of incidence on the siderostat

mirrors. For the seeing calibration, a seeing index S is calculated for each observation

from the residual delay (Mozurkewich et al., 1991). After removing the relatively strong

dependence of V 2 on S, calibration with respect to the other variables normally leads to

only a slight further improvement. (This situation is changed for phase-referenced data,

where an additional strong decrease of V 2 with zenith angle has to be taken into account,

see Section 9.3.8). The raw values of V 2 determined from Equation 9.1 are then divided

by V 2
sys to obtain calibrated data V 2

cal for further analysis. Both the internal noise, with

contributions from photon noise and from short-term fluctuations, and the calibration un-

certainty contribute to the error of V 2
cal. The two terms are added in quadrature to obtain

formal error bars.

9.2.3 Phase-Referenced Visibility Averaging

The wide-band tracking channel in the Mark III interferometer provides a phase reference,

which can be used to extend the coherent integration time T beyond the limit imposed

by the atmospheric turbulence. This method provides a means of obtaining substantially
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better signal-to-noise in the photon-starved regime, or even to make a transition into the

photon-rich regime. The phase-referenced quantities Xr, Yr, Vr, and φr are defined by

Xr + iYr = Vr eiφr = Vs ei(φs−
λt
λs

φt) , (9.5)

where λs, Vs, φs are the wavelength, visibility, and phase in the signal channel, and λt,

φt the wavelength and phase in the tracking channel. In practice, V 2
r is computed from

Equation 9.1 using Xr and Yr instead of X and Y ; this procedure retains the advantage of

using an unbiased estimator.

Equation 9.5 assumes that the atmospheric phase at λs is given by (λt/λs)φt. If this were

the case exactly, there would be no coherence losses, and the integration time could be

arbitrarily long. A number of systematic effects (discussed in more detail in Section 9.3, see

also Quirrenbach et al. 1994) can lead to a decorrelation of the phases between the signal

and tracking channels, however. They introduce additional phase noise, which reduces the

system visibility and limits the maximum integration time. The dependence of the system

visibility on seeing and zenith angle is also made steeper, which increases the uncertainty of

the calibration. In practice, therefore, phase-referenced averaging involves trading off some

calibration accuracy for the gain in signal-to-noise.

9.2.4 Limb Darkening of Arcturus

A good example for the use of phase-referenced visibility averaging are the Mark III ob-

servations of limb darkening in Arcturus (Quirrenbach et al., 1996). The main challenge

of limb-darkening measurements is the need to collect data in the vicinity of and beyond

the first zero of the visibility function.† The signal-to-noise ratio (Equation 9.4) of these

measurements is normally very small. Since V 2 � 1, even observations of extremely bright

stars like Arcturus may be in the “photon-starved” regime, and phase-referencing may lead

to a substantial improvement. Fortunately the fringe-tracking channel of the Mark III in-

terferometer provides a convenient phase reference. The signal-to-noise ratio in this channel

is much higher than in the 550 nm signal channel, first because the tracking channel has a

much larger bandwidth, and second because the tracking wavelength is longer and therefore

has a higher visibility (see also Figure 9.4).

Figure 9.2 shows Mark III visibility measurements for Arcturus at 550 nm. The three

baselines were chosen to bracket the first zero of the visibility function at that wavelength.

The data were processed with phase-referencing (Equation 9.5), and a coherent integration

time of 256 ms was chosen. The 3σ upper limit for the smallest visibilities plotted in

Figure 9.2 is V 2 ≤ 10−4. This means that the data close to the zero would be in the

photon-starved regime for the “standard” Mark III coherent integration time of 4ms; the

error bars would be much larger with the standard processing. The effect of varying the

coherent integration time is illustrated in Figure 9.3. In this figure, the formal error of V 2

†On short baselines the visibility function of a limb-darkened disk is virtually indistinguishable from that

of a somewhat smaller uniform disk.
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Figure 9.2: Mark III visibility data on α Boo (Arcturus) at λs = 550nm on three differ-
ent baselines near the first zero of the visibility function. The data were processed
with the phase-referenced averaging algorithm, using a coherent integration time of
256 ms.

is plotted versus V 2 for a number of observations very close to the zero of the visibility

function. Each observation was processed with four different coherent integration times

(4 ms, 32 ms, 256 ms, and 1024 ms). We see that with increasing integration time both

the formal errors (vertical position of the data points in Figure 9.3), as well as the scatter

between them (horizontal spread of the points) get smaller. The dashed lines correspond

to a −1σ-deviation from V 2
cal = 0, and a +1σ-deviation from V 2

cal = 2 · 10−4. It can be seen

from the figure that almost all data points are consistent with 0 ≤ V 2
cal ≤ 2 · 10−4 on the 1σ

level, but the uncertainty of the V 2cal estimate gets much smaller with increasing coherent

integration time.

9.2.5 Further Applications of Same-Source Phase Referencing

The Mark III observations of Arcturus described in the previous section are an example of

wavelength bootstrapping. This technique uses the fact that the signal-to-noise ratio may

be high at a certain wavelength λ1, but low at another wavelength λ2. An important case,

illustrated in Figure 9.4, is the situation where the difference in signal-to-noise is due to

V 2 being high at λ1, but low at λ2. It is then possible to observe at λ2, while the fringe

tracker is working at λ1. For example, wavelength bootstrapping is useful for imaging stellar

photospheres, where λ1 can be in the IR and λ2 in the visible, or for imaging circumstellar
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Figure 9.3: Mark III data on α Boo (Arcturus) at 550 nm, very close to the first zero
of the visibility function (corresponding to the group of points near 65 arcsec−1 in
Figure 9.2). The plot shows the formal error of V 2

cal
as a function of V 2

cal
, for four

different coherent integration times. All points that are compatible with 0 ≤ V 2

cal
≤

2 · 10−4 to within 1σ lie in the wedge-shaped region between the two dashed lines.
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Figure 9.4: Wavelength bootstrapping. The fringes are tracked at a long wavelength.
The observations are done on the same baseline, but at a shorter wavelength, where
the resolution is higher, but V 2 much smaller.
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Figure 9.5: Baseline bootstrapping. The fringes are tracked on the short baselines
of the array (in this case a five-element linear configuration), where V 2 is high. The
observations can then be done on the long baselines.

matter, where λ1 can be in the continuum (where the small stellar photosphere dominates)

and λ2 in a line emitted by the extended material.

In interferometer arrays with more than two telescopes, a different variant of phase ref-

erencing is possible: baseline bootstrapping (see Figure 9.5) uses the signal on the short

baselines of the array for the fringe-tracking servo, while data are taken on the long base-

lines, where V 2 can be much lower.‡ The configuration of the Navy Prototype Optical

Interferometer, which is optimized for observations of stellar surface structure, has been

laid out specifically to make use of baseline bootstrapping (Mozurkewich and Armstrong,

1992). A related idea has been developed for arrays with telescopes of different sizes, such

as the VLTI and the Keck Interferometer. Fringe tracking is required only on the more

sensitive baselines which involve at least one large telescope, while bootstrapping enables

observations on the baselines between two small telescopes. It is also possible, of course, to

combine baseline bootstrapping and wavelength bootstrapping.

So far we have discussed applications of phase-referencing that use the phase relation be-

tween the reference channel and the signal channel only implicitly, to remove the atmo-

spheric phase and to increase the interferometric sensitivity. One can also make explicit

use of the referenced phases and use them for phase-referenced imaging or phase-referenced

spectroscopy. If the reference star can be considered a point source (or if its structure phase

can be computed and subtracted from the reference phase), the referenced phase can be

used directly as the Fourier phase in an image reconstruction algorithm. An example is

emission-line observations of circumstellar matter. In many cases the continuum emission

of the stellar photosphere provides a nearly point-like reference for the much more extended

line emission. The phase difference between line and continuum is then an observable that

can be used for imaging the line emission. If sufficient spectral resolution is available, this

can even be done separately for a number of radial velocity channels. By referencing to the

continuum phase, these channel maps can be registered with respect to each other and with

respect to the continuum. One should note that true imaging with full phase information

is possible in this way even with a single-baseline instrument (if data are collected succes-

‡Clearly, when the pathlength from telescope 1 is kept equal to the pathlength from telescope 2, and

the pathlength from telescope 2 equal to that from telescope 3, the paths from telescopes 1 and 3 are also

equal. However, one has to keep in mind that the phase errors accumulate along the chain of baselines that

are co-phased in this manner.
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Figure 9.6: The shift of the star – planet photocenter with wavelength gives rise to an
interferometric phase shift that can be exploited to obtain a spectrum of the planet.

sively on a sufficient number of points in the (u, v) plane to satisfy the Nyquist sampling

theorem).

Another potential application of phase-referencing is the spectroscopy of faint stellar com-

panions (Quirrenbach, 2000). For example, the near-infrared spectra of extrasolar plan-

ets should be characterized by extremely deep absorption bands of water and methane.

The photocenter of a star-planet system is therefore slightly different outside the molecular

bands, where the planet is relatively bright, and within the bands, where it is much dimmer

(see Figure 9.6). The shift of the photocenter is proportional to the planet / star brightness

ratio and can thus be used as a proxy for the planet spectrum. The shift of the photocenter

gives rise to a corresponding wavelength dependence of the interferometer phase, which can

be measured if the signal-to-noise ratio is sufficient and systematic effects are kept small. In

the case of “hot Jupiters,” which are quite favorable because the planets are close to their

parent stars and therefore hot and bright, the expected effect on the interferometer phase

is ∼ 0.5 mrad on the longest baselines of the Keck Interferometer or VLTI. This could be

measured with a signal-to-noise ratio of ∼ 3000, but reducing the systematic instrumental

and atmospheric effects to that level will be a very challenging task.

9.2.6 Off-Source Phase Referencing

A common characteristic of the techniques discussed so far is that the reference phase

is measured on the target object itself, either at a different wavelength or on a different

baseline. This helps for observations of bright objects in the low-visibility (and therefore

“photon-starved”) regime, and for specific spectroscopic applications. For faint objects,

however, one would clearly like to emulate the phase calibration procedure widely used in

radio astronomy in which the atmospheric phase is determined from a bright source near the
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target. In radio interferometry one can slew the telescope between target and reference in

intervals of several minutes, but because of the short atmospheric coherence time at visible

and near-infrared wavelengths, here the target and the reference have to be observed truly

simultaneously. Off-source fringe tracking is therefore possible only in interferometers with

a field much wider than feasible in a Michelson instrument; either a wide-field (e.g., Fizeau)

setup or a dual-star system is required. In a dual-star interferometer, each telescope accepts

two small fields and sends two separate beams through the delay lines. The delay difference

between the two fields is taken out with an additional short-stroke differential delay line;

an internal laser metrology system is used to monitor the delay difference (which is equal

to the phase difference multiplied with λ/2π, of course). Dual-star interferometry has been

demonstrated by the Palomar Testbed Interferometer (Colavita et al., 1999); it is a vital

component of the plans for the Keck Interferometer (Colavita et al., 1998) and the VLT

Interferometer (Quirrenbach et al., 1998).

The dual-star technique has been developed mainly for interferometric astrometry (another

application of phase referencing that makes explicit use of the phase difference), but it can

also be used for phase-referenced visibility averaging or phase-referenced imaging. The most

important problem encountered by all off-source phase-referencing techniques is anisopla-

natism, i.e., the fact that atmospheric fluctuations are only partly correlated in different

sky directions (see Section 9.3.7 below). The phase noise associated with anisoplanatism

causes astrometric errors, and reduces the phase-referenced visibility dramatically if the

distance to the reference source exceeds the isoplanatic angle. The need to find a reference

object within the isoplanatic patch is a severe limitation for off-source phase-referencing;

the chances to find a suitably bright star for a randomly chosen target are typically one in

a hundred or worse. Still, there are a number of important astrophysical applications for

this technique: astrometric searches for unseen companions (e.g., planets)§, observations

in clusters (e.g., near the Galactic Center), and programs in which a few suitable targets

can be drawn from comparatively long lists (e.g., observations of extragalactic sources that

happen to be close in the sky to a bright star).

The reference source can also be used for adaptive optics wavefront sensing, if such a

system is available. In this case the whole entrance pupil of the interferometer is made fully

cophased and the sensitivity of the interferometer is essentially identical to the sensitivity

of a single telescope with the same diameter. It is thus important to realize that bright

objects are needed to cophase an interferometer, but very faint sources can be observed in a

limited field around these reference sources.

§In this case the target is normally a nearby and therefore bright star, which can be used for fringe

tracking. It is still necessary to find nearby astrometric reference stars, but they can be much fainter,

because phase-referenced fringe tracking can be applied to them: the astrometric target is the interferometric

reference for the astrometric reference stars.
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9.3 Phase Decorrelation Mechanisms

9.3.1 Phase Errors and Coherence Losses

We will now discuss a number of mechanisms that lead to phase errors and therefore to

coherence losses and to a reduction of the phase-referenced visibility. These effects can

be broadly divided into two classes, namely those mechanisms that are due to errors in

the determination of the phase in the reference channel (Sections 9.3.2–9.3.5), and those

that are due to atmospheric propagation effects (Sections 9.3.6–9.3.9). While some of

the former processes are instrument-dependent and can be reduced (or even avoided) by

improved interferometer and fringe-detector designs, the latter class sets fundamental lim-

its to the application of phase-referencing methods from the ground. We will again use

phase-referenced visibility averaging with the Mark III interferometer to give some specific

numerical examples (see also Quirrenbach et al. 1994).

If the variance of the referenced phase φr associated with a decorrelation mechanism is σ2
φ,r,

it will reduce V 2
r by a factor η, which can be computed from

η = e−σ2

φ,r . (9.6)

For assessing the individual mechanisms, it is not only important to compare the numerical

values of the associated phase variances, but also to note their dependencies on observing

conditions (e.g. seeing, zenith angle) and particularly on stellar parameters (e.g. colors).

While the standard calibration procedure will correct for a uniform reduction of V 2, and

to some extent for variations with observing conditions, effects that differ from star to star

can introduce systematic errors that are difficult to detect. A priori limits on these effects

are therefore necessary for practical applications of phase-referenced visibility averaging.

9.3.2 Photon Noise in the Tracking Channel

The finite number of photons detected during each coherent integration interval (4 ms in the

Mark III case) sets a fundamental limit to the precision of the reference phase determination.

The variance of φr due to photon noise in the tracking channel is

σ2
φ,r =

(

λt

λs

)2

σ2
φ,t,phot =

(

λt

λs

)2

· 2

NtV 2
t

, (9.7)

where Nt and Vt are the number of the photons counted and the visibility in the tracking

channel. σ2
φ,r depends on the brightness and color of the star, and even on the baseline

length (through V 2
t ). However, for the fringe tracker to work reliably under average seeing

conditions, NtV
2
t ' 70 is needed for the 4 ms sampling interval, giving η ' 0.98 for λt =

700 nm, λs = 800 nm, and η ' 0.95 for λt = 700 nm, λs = 500 nm. Thus the visibility

reduction is slight even for stars that are close to the sensitivity limit of the fringe tracker,

and negligible for stars that are substantially brighter. It is also possible to introduce

the signal-to-noise in the tracking channel as an additional independent variable in the

calibration process, if very high accuracy is required.
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9.3.3 Color and Visibility Dependence of the Effective Tracking Wavelength

To achieve high sensitivity (and to keep the errors due to photon noise small), the bandpass

in the fringe-tracking channel should be made as wide as possible. The effective wavelength

to be used in Equation 9.5 is then given by

λt =

∫

dλλWt(λ)N(λ)V (λ)
∫

dλWt(λ)N(λ)V (λ)
, (9.8)

where N(λ) is the number of photons emitted by a star as a function of wavelength, V (λ)

the visibility, and Wt(λ) the combined response of atmosphere, instrument, and detector.

If the wavelength used in Equation 9.5 differs from the true effective wavelength by δλt,

the resultant variance of the reference phase is

σ2
φ,r =

(

δλt

λs

)2

· 〈φ2
t 〉 . (9.9)

As evident from Equation 9.8, the true effective wavelength depends on stellar colors and

diameters, and on the baseline length. If for simplicity one uses λt = 700 nm for all

stars, δλt
<∼ 25 nm for the parameters of the Mark III interferometer. With the additional

assumption that the residual atmospheric phase rms not tracked by the fringe tracker
√

〈φ2
t 〉 <∼ 2 rad, η >∼ 0.99 is derived from Equation 9.9.

9.3.4 Stroke Mismatch

In pathlength modulation schemes like that used by the Mark III, any difference between

the stroke of the 500 Hz pathlength modulation and the wavelength λ will also lead to errors

in the phase estimation, since then the bins A, B, C, and D do not correspond exactly to

λ/4. (This correspondence is assumed implicitly in Equation 9.2.) For each channel, the

gating of the electronic counters for A, B, C, and D has to be set by the on-line control

system to match one quarter of the nominal wavelength. In this way, an effective stroke s

is created for each channel. Defining

ε =
2π

λ
· (s− λ) and δ =

cos ε/4

1 + sin ε/4
, (9.10)

it has been shown by Colavita (1985) that

tanφest = δ · tanφtrue , (9.11)

where φest is the phase estimated from Equation 9.2, and φtrue is the true phase. For

a complete treatment of the effect of the stroke mismatch, these equations have to be

integrated over λ, with a suitable weighting function representing the bandpass of the

tracking channel. To first order, however, it can be assumed that the phase error is given

by Equations 9.10 and 9.11, evaluated at λ = λt. For st − λt ≤ 25 nm, a phase error

φest − φtrue ≤ 2◦ is then obtained. Errors of this order can be safely ignored for most

visibility averaging applications, but may be important for phase-referenced imaging and

spectroscopy.
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9.3.5 Fringe Jumps

An ideal fringe tracker would follow the atmospheric pathlength fluctuations to a fraction

of λt, and φt would always be well within the interval (−π, π). In practice, however,

temporary excursions from the central fringe that are larger than λ/2 may occur, and the

phase has to be “unwrapped” by the phase-referencing algorithm. This is done by imposing

the requirement that the phase in successive data segments (4 ms intervals for the Mark III)

should be continuous. While this process normally works well, occasional misidentifications

are possible. It is obvious from Equation 9.5 that a 360◦ error in φt will lead to a phase

jump in φr.

If the average number of these jumps during the coherent integration time T is small,

the coherence loss is not dramatic. This requirement sets an upper limit to T . Since the

probability of unwrapping errors depends only on the seeing and on the signal-to-noise in

the tracking channel, it can be accounted for in the calibration procedure. In a series of

tests with the Mark III, it turned out that the degradation of the phase-referenced visibility

Vr due to fringe jumps was not serious for integration times up to 2 s, for average seeing

conditions on Mt. Wilson.

9.3.6 Dispersion

While Equation 9.5 assumes that the atmospheric pathlength fluctuations are independent

of wavelength, they are actually larger in the blue spectral range than in the red, because

of dispersion. The two-color dispersion coefficient D is defined by

D =
n(λt)− 1

n(λs)− n(λt)
, (9.12)

where n(λ) is the refractive index of air at λ. Typical values for λt = 700 nm and λs = 450,

500, 550, and 800 nm are D = 59, 87, 137, and −364, respectively. If the total “unwrapped”

phase in the tracking channel is denoted Φt, a phase error (λt/λs)(Φt/D) is introduced by

the dispersion. Since the largest phase excursions occur on long time scales, this sets a limit

to the coherence time. For Kolmogorov turbulence, the coherence time t0,r of φr is given

by

t0,r = |D|6/5 t0,s , (9.13)

where t0,s is the atmospheric coherence time in the data channel (Colavita, 1992). Under

average conditions on Mt. Wilson, t0,s is of order 6 to 8 ms at 500 nm. For integration times

up to about 2 s, the coherence losses due to dispersion are therefore tolerable for visibility

averaging, and they can be taken into account by the calibration procedure.

It is obviously possible to deal with dispersion explicitly by using

φ̃r = φs −
λt

λs
φt −

λt

λs
· Φt

D
(9.14)
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instead of φr as defined in Equation 9.5. While this approach can reduce the phase errors

by a factor ∼ 10, a residual effect due to water vapor fluctuations remains, because their

dispersion is different from the values applicable to dry air.

9.3.7 Anisoplanatism

If the reference phase is measured on a star at an angular separation θ from the target

object, there will be some decorrelation because the light from the two sources passes

through different turbulence cells. The angle θi for which the variance of the relative phase

is 1 rad2 is called the isoplanatic angle. In interferometric applications, the independent

contributions from the two arms of the interferometer have to be taken into account, giving a

somewhat smaller value for θi. Under the assumption of a Kolmogorov turbulence spectrum

with refractive index structure constant C2
n(h) at height h, the interferometric isoplanatic

angle is

θi =

[

5.82 k2(sec z)8/3

∫ ∞

0
dhC2

n(h)h5/3

]−3/5

, (9.15)

where k = 2π/λ is the wavenumber (assumed here to be equal for the target and reference

channels), and z the zenith angle. While this expression holds for small apertures, a some-

what more optimistic estimate is obtained for larger apertures (Colavita, 1992). Typical

values for θi are of order a few arcseconds, much larger than the interferometric field of

view of a Michelson interferometer. In applications where the reference phase is measured

on the object of scientific interest itself, anisoplanatism does not occur at all. However, it

is the most severe limitation for dual-star interferometry. We see from Equation 9.15 that

θi ∝ k−6/5 ∝ λ6/5; this means that finding reference stars for dual-star interferometry is

much easier at longer wavelengths.

9.3.8 Differential Refraction

An effect somewhat similar to anisoplanatism occurs even when the angular separation

between the target and the reference is zero. If λs 6= λt, the beams at the two wavelengths

follow different paths through the atmosphere at non-zero zenith angles, due to differential

refraction. For a Kolmogorov turbulence spectrum, the corresponding phase variance is

σ2
φ,r = 5.82 k2

s

[

h0 (n(λt)− 1) e−h1/h0

D

]5/3

tan5/3z sec8/3z

∫ ∞

0
dhC2

n(h)
(

1− e−h/h0

)5/3
,

(9.16)

where ks = 2π/λs is the wavenumber in the signal channel, n(λt) is the atmospheric index of

refraction at λt, D is the atmospheric dispersion between λs and λt defined by Equation 9.12,

h0 is the scale height of the atmospheric density, h1 is the elevation of the observatory site

above sea level, z is the zenith angle, and C2
n(h) is the refractive index structure constant.

Again, this estimate might be somewhat pessimistic, since averaging over the aperture has

not been taken into account.
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Figure 9.7: Reduction of V 2 due to differential refraction as a function of zenith angle
z, predicted from a Hufnagel (1974) model atmosphere. The reference wavelength
λt = 700nm; the wavelength in the data channels λs = 450, 500, 550, and 800 nm.

The phase variance due to differential refraction depends very strongly on z; while it is

negligible close to the zenith, it is the dominant decorrelation mechanism at intermedi-

ate to large zenith angles for the parameters of the Mark III phase-referenced visibility

averaging experiments. From Equation 9.16 it is obvious that differential refraction—like

anisoplanatism—is more strongly affected by high-altitude turbulence than by disturbances

close to the ground. This is expected, since the beams from target and reference coincide

at the telescope aperture; their separation increases with height when they are traced back

through the atmosphere. To carry out quantitative calculations of differential refraction,

it is therefore necessary to know the turbulence profile; in the absence of better measure-

ments we use the model for the atmospheric turbulence as a function of height h (in m) by

Hufnagel (1974),

C2
n(h) = 2.7 ·

(

2.2 · 10−53h10e−h/1000 + 10−16e−h/1500
)

. (9.17)

Figure 9.7 shows the reduction of V 2
r derived from a numerical integration of Equation 9.16,

with the Hufnagel turbulence profile. The values h0 = 8300 m, h1 = 1700 m (applicable

to Mt. Wilson), λt = 700 nm, and λs = 450, 500, 550, and 800 nm were used. This figure

demonstrates that differential refraction leads to a much steeper dependence of the system

visibility with zenith angle in the phase-referenced data than in incoherent averages. This
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Mark III Interferometer         4-ms integration         500 nm
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Figure 9.8: Observed V 2 divided by an estimate V 2
est from photometric data, for 16

stars at 500 nm. The data were obtained on the nights July 29 and July 31, 1989;
they are plotted a function of zenith angle z. Each night was normalized to 1 at
z = 0. Each measurement corresponds to one 75-s observation. The standard data
reduction procedure was used, which averages the 4-ms samples incoherently.

effect is particularly important in the blue spectral range, where the dispersion is large

(small values of D). Differential refraction therefore restricts the application of phase-

referenced visibility averaging to moderate zenith angles, depending on the wavelength λs

and on the seeing.

Figure 9.8 shows the Mark III system visibility for two nights (July 29 and 31, 1989)

as a function of zenith angle z, for the data integrated incoherently with the standard

method; it has been normalized to V 2
sys = 1 at z = 0. It is obvious that V 2

sys varies only

slightly with z; this variation is mostly due to the degradation of the seeing for longer

pathlengths through the atmosphere. Figure 9.9 shows the same data, but processed with

the phase-referencing algorithm, using an integration time of 1024 ms. A strong reduction

of the system visibility is now apparent at z >∼ 40◦. The solid line indicates the visibility

reduction due to differential refraction predicted by the Hufnagel (1974) atmosphere model.

The qualitative agreement between the observations and this model demonstrates that

differential refraction is indeed the dominant reason for coherence losses at intermediate to

large zenith angles.
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Mark III Interferometer    1024-ms integration    500 nm      Hufnagel model
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Figure 9.9: The same data as in Figure 9.8, but processed with the phase-referenced
averaging algorithm. The coherent (phase-referenced) integration time is 1024 ms.
The solid curve is the visibility reduction due to differential refraction predicted by the
Hufnagel model atmosphere; the dashed curves correspond to atmospheres that
have 0.5 and 2 times the C2

n
of the Hufnagel model at all heights.

9.3.9 Diffraction

Finally, if λs 6= λt, there will be some decorrelation because of diffraction. The phase

variance due to diffraction is related to the intensity scintillation variance σ2
ln I by

σ2
φ,r = G(λt/λs)σ2

ln I(λt) , (9.18)

with a function G(r), which can be approximated by

G(r) '
(

r1/2 (r − 1) /2
)4/3

(9.19)

for 1 ≤ r <∼ 1.5 (Colavita, 1992). Observed values for σ2
ln I on Mt. Wilson range from

0.005 to 0.05. The larger of these values gives σ2
φ,r = 0.0073, or η = 0.99 for λt = 700 nm,

λs = 500 nm. Since all stars are affected equally, the calibration procedure takes into

account the small coherence loss due to diffraction.
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